Characterisation of Early Mucosal and Neuronal Lesions Following Shigella flexneri Infection in Human Colon
نویسندگان
چکیده
BACKGROUND Shigella, an enteroinvasive bacteria induces a major inflammatory response responsible for acute rectocolitis in humans. However, early effect of Shigella flexneri (S. flexneri) infection upon the human mucosa and its microenvironement, in particular the enteric nervous system, remains currently unknown. Therefore, in this study, we sought to characterize ex vivo the early events of shigellosis in a model of human colonic explants. In particular, we aimed at identifying factors produced by S. flexneri and responsible for the lesions of the barrier. We also aimed at determining the putative lesions of the enteric nervous system induced by S. flexneri. METHODOLOGY/PRINCIPAL FINDINGS We first showed that, following 3 h of infection, the invasive but not the non-invasive strain of S. flexneri induced significant desquamation of the intestinal epithelial barrier and a reduction of epithelial height. These changes were significantly reduced following infection with SepA deficient S. flexneri strains. Secondly, S. flexneri induced rapid neuronal morphological alterations suggestive of cell death in enteric submucosal neurones. These alterations were associated with a significant increase in the proportion of vasoactive intestinal peptide (VIP) immunoreactive (IR) neurons but not in total VIP levels. The NMDA receptor antagonist MK-801 blocked neuronal morphological changes induced by S. flexneri, but not the increase in the proportion of VIP-IR. CONCLUSIONS/SIGNIFICANCE This human explant model can be used to gain better insight into the early pathogenic events following S. flexneri infection and the mechanisms involved.
منابع مشابه
New animal model of shigellosis in the Guinea pig: its usefulness for protective efficacy studies.
It has been difficult to evaluate the protective efficacy of vaccine candidates against shigellosis, a major form of bacillary dysentery caused by Shigella spp. infection, because of the lack of suitable animal models. To develop a proper animal model representing human bacillary dysentery, guinea pigs were challenged with virulent Shigella flexneri serotype 2a (strains 2457T or YSH6000) or S. ...
متن کاملIpaD-loaded N-trimethyl Chitosan Nanoparticles Can Efficiently Protect Guinea Pigs against Shigella Flexneri
Background: Shigella flexneri is a pathogen responsible for shigellosis around the world, especially in developing countries. Many immunogenic antigens have been introduced as candidate vaccines against Shigella, including N-terminal region of IpaD antigen (NIpaD). Objective: To evaluate the efficiency of O-metylated free trimethyl chitosan na...
متن کاملStereotypic and specific elements of the human colonic response to Entamoeba histolytica and Shigella flexneri.
The clinical presentations of bacillary dysentery caused by shigella, and amoebic dysentery caused by the protozoan parasite Entamoeba histolytica, can be indistinguishable, with both organisms causing colonic mucosal damage and ulceration. However, the two organisms are quite distinct, and have very different pathogenic mechanisms. This raises the fundamental question of whether the similar cl...
متن کاملPredominance of serotype-specific mucosal antibody response in Shigella flexneri-infected humans living in an area of endemicity.
The mucosal humoral immune response elicited following Shigella flexneri infection in patients living in Antananarivo districts (Madagascar Island) was evaluated by measuring the gut-derived, circulating immunoglobulin A (IgA) antibody-secreting cells (ASC) specific for the major bacterial antigen lipopolysaccharide (LPS). Fifty, 34, 11, and 5% of the S. flexneri-positive patients were infected...
متن کاملSumoylation controls host anti-bacterial response to the gut invasive pathogen Shigella flexneri.
Shigella flexneri, the etiological agent of bacillary dysentery, invades the human colonic epithelium and causes its massive inflammatory destruction. Little is known about the post-translational modifications implicated in regulating the host defense pathway against Shigella. Here, we show that SUMO-2 impairs Shigella invasion of epithelial cells in vitro. Using mice haploinsufficient for the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009